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Introduction 
At Prominence, we help healthcare organizations do more with their data, and we strive to make 
healthcare smarter. Predictive analytics – including data science, machine learning, and 
generative AI – achieves this transformation when integrated with healthcare providers and 
experts. Prominence works hand-in-hand with healthcare organizations to lay the foundation 
necessary to leverage predictive analytics effectively.  

This paper focuses specifically on Prominence’s approach to supervised machine learning, a 
key aspect of a strong Data Science practice. To define some terms: machine learning is the 
process of building an algorithm that learns patterns from historical data, applies those patterns 
to new data via prediction, and refines its understanding continuously as new data is created – 
all without explicit programming for those patterns. And supervised refers to algorithms trained 
to predict a particular outcome variable, unlike unsupervised tasks that seek to identify patterns 
without a predefined target.  

For patients, a well-implemented predictive model can lead to earlier interventions, better health 
outcomes, and an enhanced experience. And from a 
hospital administration perspective, such a model 
could reduce long-term costs, conserve scarce 
resources, improve hospital rankings, aid in strategic 
planning, and boost satisfaction for both patients 
and staff.  

I will illustrate Prominence’s predictive analytics 
methodology and best practices using a recurring 
example: a model predicting the likelihood of 
readmission within 30 days for newly discharged 
diabetic patients. I’ll go through the process of framing the problem, collecting data, and 
developing and deploying a trained model. A note to readers: throughout the paper, I will include 
snippets of code to illustrate the modeling process. Feel free to skip over these if you are so 
inclined; it should not detract from your understanding. 

 

 

 

 

“Machine learning is the process of building an 
algorithm that learns patterns from historical data, 
applies those patterns to new data via prediction, 
and refines its understanding continuously as new 
data is created – all without explicit programming 
for those patterns.” 



Framing the Problem 
Many machine learning projects fail at the outset because they jump to a specific machine 
learning tool or algorithm too soon. Focusing too much on the type of predictive model to build 
can result in failing to address the actual opportunity at hand – of missing the forest for the 
trees. A more successful strategy is to start with the specific healthcare problem you aim to 
solve – especially understanding why it needs solving. 

In general, a good starting point is to enumerate the decision points within the process at hand. 
Machine learning can be particularly impactful when applied to frequently made decisions. The 
premise is that consistently accurate predictions can incrementally improve decision outcomes, 
leading to substantial long-term benefits.  

Strategically identifying where a prediction can exert leverage will help clarify the tactical 
machine learning approach. For instance, do providers need to select from multiple discrete 
options for a patient? Use classification. Do analysts need to detect when a metric deviates from 
its historical norm? Use anomaly detection. Do administrators need to plan based on expected 
future patient population levels? Use forecasting. 

In our example, the target solution is reducing the rate of 30-day readmissions for diabetic 
patients. There are several reasons to pursue this goal – it will produce better patient health 
outcomes, it will reduce patient and hospital cost, and it will help a hospital’s quality metrics. As 
hospital administrators, we need to identify which patients may require intervention post-
discharge to prevent readmission and determine the appropriate interventions. 

To improve this decision, I could build a model to 
predict the probability that each discharged diabetic 
patient will be readmitted within 30 days. With this 
information, I can: a) rank patients based on their 
need for assistance from limited hospital resources; 
and b) assess whether the number of at-risk patients 
exceeds available resources to aid in future staffing 

decisions. Furthermore, understanding the features that lead to a high readmission probability 
allows us to tailor interventions for individual high-risk patients. 

Lastly, I need to determine the timing of the prediction, which will be essential in the next section 
(“Collecting Data”). In this case, I’m going to make the prediction upon discharge so that I can 
implement post-discharge interventions.  

A brief note on tooling: I used a Databricks notebook and cluster to build the model, primarily 
using various Python libraries (e.g. pandas, scikit-learn).  

“Strategically identifying where a prediction can 
exert leverage will help clarify the tactical machine 
learning approach.” 



Collecting Data 
The Dataset 
Supervised machine learning algorithms need historical data consisting of an outcome to 
predict, or “target variable”, and numerous related data points, or “features”, from which the 
model can learn the patterns that predict future outcomes. Features can come from structured 
data (e.g. database tables) or unstructured data (e.g. natural language text or audio), but their 
form and timing must comply with the time horizon at which a prediction will be made. In other 
words, a data point that is not available in a specific format at the time a future prediction is 
needed is not eligible to be included in the model. To use our recurring example: given that this 
is historical data, we may know why a patient was readmitted, but it would be “cheating” to use 
that in the model training, as it won’t be available when making real-world predictions.  

Identifying relevant datasets and merging multiple data sources accurately involves close 
collaboration between data scientists and domain experts, such as SQL DBAs and healthcare 
SMEs. Since a model’s performance hinges on the quality of data it’s trained on, this step is 
critical and demands strategic handling. 

For our diabetic readmission dataset, the target variable is a binary classification: whether or not 
a patient was readmitted within 30 days of discharge. I have approximately 80,000 unique 
encounters, paired with a reasonably wide range of features, including length of stay, number of 
diagnoses, discharge dispositions, and some basic demographic data. Altogether, I have about 
50 total features to feed into the model. Note that this is a de-identified, publicly available 
dataset, so it’s missing other valuable data categories I would ideally include, such as patient 
history, clinical notes, insurance details, and more comprehensive demographic information. 
(See table below for a selection of data from our readmission training set.) 

It's important to remember that this model predicts readmission upon discharge. If the scope 
were to change to predict readmission while the patient is still hospitalized, I would need to 
create a different dataset containing only the information available prior to discharge. 

At a high and slightly obvious level, machine 
learning models require high-quality data to perform 
optimally. Ideal datasets are both “deep” (i.e., many 
instances of the outcome to predict) and “wide” (i.e., 
a number of data points beyond easy human 
analysis capacity). Such datasets are more likely to 
facilitate pattern recognition and are generally 
beyond the scope of manual human analysis.  

More nuanced, though, is the fact that more 
datasets and variables should be included, rather 
than less. Machine learning algorithms can sift through dozens or hundreds of variables to 
identify which are relevant for predicting an outcome, so it’s unnecessary at best and 
detrimental at worst to trim the data the model trains on, at least at first. There could be 
performance reasons to do so later in the model deployment process, but at first, an unbiased 
approach to data inclusion is generally preferable.  

“Identifying relevant datasets and merging multiple 
data sources accurately involves close collaboration 
between data scientists and domain experts. Since 
a model’s performance hinges on the quality of 
data it’s trained on, this step is critical and 
demands strategic handling.” 



Feature generation 
Where human intuition does become critically important is during a process called “feature 
generation.” In this stage of the machine learning workflow, a data scientist works with one or 
more SMEs to create novel data points to enhance the model’s learning capabilities. This helps 
the model identify significant patterns that aren’t explicitly encoded in the dataset. Some 
common examples: calculating BMI using height and weight, categorizing pre-existing 
conditions as chronic or not, and flagging medications known to have interaction effects.   

For feature generation in our readmission model example, I grouped diagnosis codes into ICD 
categories and flagged whether they included a letter or decimal, which signifies different levels 
of specificity or types of categorization.  

In summary, a machine learning model needs a dataset with as many historically representative 
feature-outcome pairs as is practical. This enables the model to learn relevant patterns to 
effectively predict the outcome in question when faced with new combinations of features in 
real-world scenarios. 

 

Relevant tools and capabilities 

• Querying data, using SQL  
• Data cleaning and preparation, using (typically) Python or R 
• IDE, in this case Databricks but could also be VS Code, Jupyter Notebooks, Azure ML Studio, Snowflake, or 

RStudio 
• Feature generation, incorporating Healthcare SMEs 

 

 

Training data: ID columns, selected features, and target variable  



Model Development 
Now that I have a dataset, the next step is to fit a model to my historical data. The first step is 
crucial – I split my data into training and test sets. (See code snippet below.) I’ll experiment with 
various model configurations only on the former; I keep the test set out of the initial training as a 
simulation of a future scenarios where the model must accurately predict outcomes for new 
data. Holding out a test set helps prevent “overfitting,” where the model learns only the contours 
of the training dataset rather than generalized patterns that can be applied to new data.  

 

 
 

Next, the data needs to be cleaned and prepared for the algorithms I plan to test. This is a 
critical, and often time-consuming, part of the machine learning workflow. Without diving into too 
many details, a data scientist must handle missing, uncommon, and outlier values, and properly 
encode features for the machine learning algorithms. Without this preparation, powerful and 
publicly available algorithms will not function.  

 

Model configuration 
To find the optimal model configuration to maximize predictive ability, a data scientist designs 
an experiment to build and evaluate multiple candidate models. This involves testing: 

• various algorithms suitable for the problem type (e.g. RandomForest, XGBoost, ARIMA) 
• hyperparameters for each algorithm (e.g., maximum depth for a Random Forest, 

learning rate for XGBoost) 
• the number of features included in training 

For our readmission model, I divided the historical patient encounter data into training and test 
sets using an 80/20 split. I then set up a machine learning experiment using Hyperopt (an open-
source Python library for hyperparameter optimization) and MLflow (an open-source platform for 

from sklearn.model_selection import train_test_split 

# Sample data and target variable  
X = use_df.drop(target_col, axis=1)  
y = use_df[target_col]          
 
# Define the columns to be used in the model 
X_model = X.drop(cols_to_ignore, axis=1) 
 
# Store the original IDs 
original_ids = X[ID_cols] 
 
# Split data into train and test sets 
X_train, X_test, y_train, y_test, ids_train, ids_test = train_test_split(X_model, 
y, original_ids, test_size=0.25, random_state=42) 



managing machine learning workflows) to determine the combination of model, hyperparameter, 
and feature selection that offers the best generalized predictive performance. 

Specifically, I tested RandomForest, XGBoost, and LightGBM classifiers along with a range of 
their respective hyperparameters. (Feature selection is included in hyperparameter testing for 
these algorithms.) I used cross-validation – further splitting the training data into smaller subsets 
while exploring the hyperparameter space – to minimize the risk of overfitting. (See snippet 
below for calling the optimization code.) 

 

 
 

There are a few different methods for evaluating the model at this stage of development. First, 
and most objectively, a data scientist chooses a specific evaluation metric to compare different 
candidates. For our readmission classification model, I chose the model with the lowest log loss 
as the best model configuration. Log loss is ideal for classification tasks with probability outputs 
because it accounts for model confidence and handles imbalanced datasets well. In this case, 
my top-performing model was LightGBM, which I used with my best hyperparameters to train a 
final model on the entire training set. 

To confirm I didn’t overfit my model, I used the final model to predict the likelihood of 
readmission in less than 30 days on both the training and test sets and calculated the log loss 
for each. The training set log loss was .316, and the test set log loss was .314. The minor 
difference, with the test set actually performing slightly better, confirmed that I passed this 
checkpoint successfully.  

  

# Running the optimization, logging in MLflow  
spark_trials = SparkTrials(parallelism=4)   # multi-threaded 
best = fmin(fn=objective_function, 
            space=space, 
            algo=tpe.suggest, 
            max_evals=100, 
            timeout=3600, 
            trials=spark_trials 
 
print("Best: ", best) 



Feature importance 
Part of evaluating a model is understanding its “reasoning.” Tools such as SHAP values, 
permutation importance, and coefficient values help explore the relative importance of different 
features to the model. While their technical details are beyond this paper's scope, these tools 
provide valuable insights into what factors influence the model’s decisions, thereby building trust 
in its accuracy and applicability. Exploring feature importance can reveal non-obvious insights 
about the real-life context, which is beneficial. However, if the results seem too surprising, 
further investigation might be needed to ensure there are no errors in data preparation or 
modeling.  

For our readmission model, the top features seem 
plausible; Discharge Disposition ID, a patient’s 
diagnoses medications, and the number of days 
inpatient all make sense as predictors! (See below 
for a table of top features; note that the prefixes 
“num_” and “cat_” refer to a given feature’s data 
type – numeric or categorical.) 

  

“These tools provide valuable insights into what 
factors influence the model’s decisions, thereby 
building trust in its accuracy and applicability.” 

 

Feature Importance chart, final model 



Simulation 
The final evaluation tool we’ll examine is simulation, where I create a historical counterfactual 
analysis. This technique attempts to re-create what would have happened had the model been 
available historically. Comparing these simulated outcomes to actual historical results allows us 
to assess the model's performance relative to a hospital’s existing process, known as BAU 
("business as usual"). 

For our readmission model, given that this is a de-identified public dataset, I don’t have a 
definitive BAU to compare to, but I can use a simplified hypothetical process to illustrate. Let’s 
assume the hospital currently ranks readmission probability based on length of stay and 
admission severity (defined by admission source). In this hypothetical scenario, the hospital 
predicts readmission likelihood using the average readmission rates for each combination of 
length of stay and admission source.  

Comparing my top model’s log loss to the hypothetical BAU’s, I find that the machine learning 
model outperforms BAU .314 to .336 - not a dramatic improvement, but it’s better. (See code 
snippet below.) It also highlights the importance of basing decisions on real-life KPIs and 
outcomes rather than hyper-specific evaluation metrics. That seemingly small difference could 
have nuances that make it significantly more effective at reducing readmission rates, or it might 
indicate that I have more work to do to refine the model.  

 

 
 

Leveraging multiple evaluation tools is crucial for objectively improving model quality, building 
stakeholder trust in its predictions, and determining when it’s time to promote the model from 
development to pilot / production. 

# ML vs. sim log loss 
print("Log Loss on Test Set, Predicted:", log_loss(y_test, y_pred_proba)) 
print("Log Loss on Test Set, Simulated:", log_loss(y_test, y_sim_pred_proba)) 

Relevant tools and capabilities 

• ML development, using Python libraries such as pandas, scikit-learn, hyperopt, and MLflow 
• Feature importance, using Python libraries such as scikit-learn, xgboost, lightgbm, and SHAP 
• Simulation, incorporating Healthcare SMEs 

 



Model Deployment 
After validating that a model is producing accurate and meaningful predictions using quantitative 
evaluation metrics and simulations, I next need to implement the model in production (i.e. use it 
in real clinical or operational workflows.) 

 

User testing, silent deployment, and pilot 
There are a number of considerations when deploying a model, starting with user testing. Early 
feedback on how accurate, both objectively and subjectively, the model’s predictions are when 
confronted with new, real data is an important source of information for effectively implementing 
the model. This can often take the form of a prototype pilot involving a select group of trusted 
end users.  

With the caveat that our readmission model is a hypothetical exercise given the nature of our 
dataset, I can still illustrate how I would deploy a readmission propensity model for diabetic 
patients being discharged. Our specific deployment goal is to stack-rank discharged patients to 
prioritize interventions to prevent near-term readmission.  

In the initial deployment stage, I would deploy the 
predictions silently for all newly discharged diabetic 
patients to monitor real-world predictive accuracy and 
begin user testing with members of the intervention team. 
The goal of the silent deployment is to ensure that the 
model has successfully generalized from the training data 
to real-world scenarios.  

For the user testing stage, I’d randomly select a subset of 
discharged patients and present their readmission 

predictions along with the most influential features to our SMEs – clinicians and intervention 
team members. (See table below for an example of an individual feature importance chart with 
an accompanying prediction.) I’m seeking subjective feedback on the plausibility of the 
predictions and features, as well as objective data on the interventions’ efficacy at lowering 
readmission rates. 

By leveraging this feedback, I refine the model as needed before a full-scale deployment, 
ensuring the model is both accurate and trusted by end users. This process increases the 
likelihood of the model's success in practical applications and helps build stakeholder 
confidence in its predictions. 

 

 

“Early feedback on how accurate, both 
objectively and subjectively, the model’s 
predictions are when confronted with new, 
real data is an important source of information 
for effectively implementing the model.” 

 

Top 5 features with predicted readmission rate, selected patient 



 

Implementation 
Once the initial pilot deployment is complete, a full rollout involves integrating the model’s 
predictions into existing end user workflows (e.g. a patient’s EMR), setting up a cadence for the 
model to continuously learn and update over time, and scoring new instances as available.  

The actual implementation into end user workflows varies on a case-by-case basis, but general 
best practice is to embed the prediction into the main tools end users already utilize. For the 
intervention team in our hypothetical readmission model deployment, if they are primarily 
checking patient EMRs, we’d integrate predictions there, but if they’re just relying on a ranked 
dashboard, we could create our own. This dashboard could also be annotated with detailed 
insights explaining why patients are ranked in a particular order. 

One of the strengths of machine learning models is their ability to learn and adapt over time. We 
can set up a process for regularly adding new data to the original training dataset, such as 
nightly or weekly updates. During this process, I will automatically test model types, 
hyperparameters, and feature selections, similar to the initial development phase, and 
programmatically promote the top performer to production. With our readmission model, this 
means I could dynamically switch between models, such as from logistic regression to 
RandomForest, based on performance data from new instances with no new coding needed. 
This is especially important if our interventions are as successful as we’d hope in changing the 
dynamics of readmission!  

New prediction generation, called “scoring” or “inference,” also needs to be engineered to occur 
automatically. This can be achieved either via real-time scoring, in which every new instance’s 
prediction is calculated and published to the end user workflow individually and as quickly as 
possible, or batch scoring, where I pull the latest round of un-scored instances and infer 
predictions in bulk.  

To illustrate the difference, imagine two different processes for our readmissions model. In a 
real-time scoring scenario, discharge paperwork could trigger the model to update the 
readmission risk score dynamically, whereas in a batch scoring paradigm, the model would pull 
all patients discharged the previous day and infer their readmission risk scores en masse. Either 
way, I am providing a unique and personalized prediction for every patient, but the timeliness of 
the risk score differs. Note that there is a tradeoff between timeliness and complexity; it is 
trickier to implement a real-time scoring system than a batch scoring one, so it’s important to 
analyze the cost-benefit ratio when deciding between the two options.  

 

Evaluation 
At this stage of the modeling process, evaluation shifts from historical counterfactuals to 
monitoring and measuring new, live data. The pilot process I mentioned earlier is an important 
evaluation mechanism and, where practical, can include or expand to a true split test, where I 
compare the new machine learning-enhanced workflow against BAU and evaluate based on the 
true KPI for the project. Remember that the goal of the model is not just accurate predictions, 
but improving key decisions and outcomes!  

For our readmission model, this would mean randomly assigning discharged patients into a 
treatment group that would receive the model’s predictions or a control group that would get 



BAU probabilities. By comparing the readmission rates of both groups over time, we can 
determine if the model results in a statistically significant reduction in readmissions. 

To reiterate, it’s crucial to judge the model on the target KPI and not just predictive accuracy. 
Circling back to the very beginning of the machine learning workflow, we need to focus on the 
problem we’re trying to solve – readmission rate reduction – rather than the model’s predictive 
power in a vacuum. A highly accurate model that can’t reduce readmission rates due to poor 
implementation is less valuable than a moderately accurate model that effectively augments and 
improves hospital processes. Accurately measuring ROI from a machine learning project will 
always mean tracking the performance improvement it drove in the targeted KPI(s).  

Surfacing insights into individual predictions is also a 
worthwhile evaluation exercise at this stage, as it will 
increase interpretability and, therefore, trust in the model’s 
predictions. There are many tools (e.g. SHAP values, 
LIME) designed to highlight the specific features that are 
contributing most significantly to a given prediction. For 
example, if a patient has a high predicted readmission 
risk, I could show that they were prescribed >5 
medications, and that the model has identified that as a 
strong predictor of readmission likelihood. 

Lastly, we need ongoing monitoring of the model’s performance. While the model can adapt 
over time, its performance can deteriorate due to changes in the underlying data or new edge 
cases. Automated monitoring should alert stakeholders and data scientists if there are issues 
such as model builds failing, missing inferences for new instances, significant deviations in 
average predictions from historical data, or worsening model evaluation metrics. While end 
users are an important source for finding bugs, having as much automation as possible will go a 
long way toward finding them quickly. 

 

Relevant tools and capabilities 

• Data visualization for experiment tracking, model insights, and dashboard implementation if necessary), using 
Tableau, PowerBI, or the like, incorporating healthcare SMEs 

• EMR technical experts (if implementing in patient EMRs), incorporating healthcare SMEs  
• ML engineering, in this case using Databricks, but could also be Snowflake, Azure ML services, AWS Sagemaker, 

or GCP 
• Data monitoring, using general purpose tools like Tableau or PowerBI, or purpose-built tools like DataDog or 

Grafana 

“It’s crucial to judge the model on the target 
KPI and not just predictive accuracy. A highly 
accurate model that can’t reduce readmission 
rates due to poor implementation is less 
valuable than a moderately accurate model 
that effectively augments and improves 
hospital processes.” 



Conclusion 
When applied to the right decision point with effective interventions and predictive-analytics best 
practices, machine learning is a powerful tool to make healthcare smarter and to do more with 
your data. This collaborative effort involves healthcare providers, SMEs, administrators, data 
scientists, and engineers, and it can create value across clinical, operational, financial, 
pharmaceutical, and personnel domains. Below is a non-exhaustive list of potential machine 
learning solutions. These examples might be directly relevant for your organization or serve to 
illustrate the types of problems where machine learning is most likely to be effective. 

If you are interested in tackling a specific problem using predictive analytics or want to learn 
more about how Prominence can help you build a robust Data Science and Machine Learning 
foundation at your organization, please get in touch:  

Andrew Williams 
Director of Data Science, Prominence Advisors 
andrew.williams@prominenceadvisors.com 
 

Machine Learning Solutions: a selected, non-exhaustive list 

Revenue Cycle Clinical Operations / 
Personnel 

DRG classifier Fall risk Provider attrition risk 

No-show appointments risk Hospital readmission Staff overtime likelihood 

Hospital length of stay 
  

Denials reduction 
  

House census 
  

 

 


